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We use Dirichlet’s kernel to give a simple proof of the classical identity of ζ(2n). Our proof simplifies the

proof in [3] and shows a deeper connection between Bernoulli numbers and Dirichlet’s kernel.

1. Introduction

Let ζ(s) denote the Riemann zeta function. The series representation

ζ(s) =

∞∑
n=1

1

ns

converges absolutely for s ∈ C when Re(s) > 1. For n ∈ N, we define Bernoulli polynomials Bn(x) by the

generating function

zexz

ez − 1
=

∞∑
n=0

Bn(x)
zn

n!
(1.1)

for |z| < 2π. We call Bn(0) the nth Bernoulli number, which henceforth will be denoted as Bn. Dirichlet’s

kernel is defined by

Dn(x) :=

n∑
k=−n

eikx = 1 + 2

n∑
k=1

cos kx =
sin((n+ 1/2)x)

sin(x/2)
. (1.2)

In this paper, we use Dirichlet’s kernel to prove the following classical result

ζ(2n) =

∞∑
k=1

1

k2n
= (−1)n−1

(2π)2nB2n

2(2n)!
(1.3)

for n ∈ N.

Our work is motivated by the elegant calculation of [2], which uses Dirichlet’s kernel to give a quick proof

of the identity

ζ(2) =

∞∑
n=1

1

n2
=
π2

6
.

Stark establishes this identity by evaluating the integral∫ π

0

tD2m−1(t) dt,

for m ∈ N in two different ways. On one hand, he evaluates this integral by using the definition of the

Dirichlet kernel as the sum of cosines in (1.2). On the other hand, he evaluates (2.1) by expressing D2m(πt)

as a ratio of sines. Upon letting m→∞, he derives the identity

∞∑
k=1

1

(2k − 1)2
=
π2

8
,

which immediately gives the identity for ζ(2).
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2. Evaluating ζ(2n)

We prove (1.3) by evaluating the integral∫ 1

0

B2n(t)Dm(2πt) dt, (2.1)

for m,n ∈ N, in two different ways. On one hand, we evaluate this integral by using the definition of the

Dirichlet kernel as the sum of exponentials in (1.2). On the other hand, we evaluate (2.1) by expressing

D2m(2πt) as a ratio of sines. The formula for ζ(2n) in (1.3) will follow from these two calculations upon

letting m→∞.

2.1. Properties of Bernoulli polynomials and Bernoulli numbers. We now state the properties of

Bernoulli polynomials and Bernoulli numbers necessary for our proof. For n ∈ N, we recall the well-known

identities

B′n(t) = nBn−1(t) (2.2)

and ∫ 1

0

Bn(x) dx = 0. (2.3)

Also recall that B1(1) = −B1(0) = 1
2 and Bn(0) = Bn(1) for n ≥ 1. Standard properties of Bernoulli

polynomials and numbers can be found in [1, Appendix B].

The following integral is a key component of our proof of (1.3).

Lemma 1. For k ∈ Z\{0} and n ∈ N, we have∫ 1

0

B2n(t) e2πikt dt =
(−1)n−1(2n)!

(2πk)2n
.

Proof. We use (2.2) to integrate by parts 2n − 1 times. Since Bn(0) = Bn(1) for n ≥ 2 and e2πikt = 1 at

both end points for all k ∈ Z, all but one term vanishes leaving

(−1)2n−1(2n)!

(2πik)2n−1

∫ 1

0

B1(t) e2πikt dt.

Integrating by parts again and using the facts B1(1) = −B1(0) = 1
2 and

∫ 1

0
e2πikt dt = 0, this reduces to

(−1)2n−1(2n)!

(2πik)2n
.

The lemma now follows upon using i2n = (−1)n. �

2.2. Evaluating the integral with Dm(2πt) as a sum of exponentials. Using the first representation

for the Dirichlet kernel in (1.2) and then interchanging the order of integration and summation, we derive

that ∫ 1

0

B2n(t)Dm(2πt) dt =

∫ 1

0

B2n(t)

(
m∑

k=−m

e2πikt

)
dt

=

∫ 1

0

B2n(t) dt+

m∑
k=−m
k 6=0

∫ 1

0

B2n(t)e2πikt dt
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By (2.3), the integral of the Bernoulli polynomial vanishes. In the remaining sum over even k, we use Lemma

1 to find that ∫ 1

0

B2n(t)Dm(2πt) dt =
(−1)n−1(2n)!

(2π)2n

m∑
k=−m
k 6=0

1

k2n

= 2
(−1)n−1(2n)!

(2π)2n

m∑
k=1

1

k2n

(2.4)

2.3. Evaluating the integral with Dm(2πt) as a ratio of sines. For fixed n, our goal is to show that∫ 1

0

B2n(t)Dm(2πt) dt = B2n +O
( 1

m

)
. (2.5)

Since B2n(0) = B2n(1) = B2n, it follows that

B2n(t) = B2n +
(
B2n(t)−B2n(0)

)
= B2n + t (t− 1)Pn(t)

for some polynomial Pn(t). The first representation for the Dirichlet kernel in (1.2) implies that∫ 1

0

Dm(2πt) dt =

∫ 1

0

(
1 +

m∑
k=−m
k 6=0

e2πikt
)
dt = 1.

Hence, using the definition of Pn(t) and the third representation for Dm(2πt) in (1.2), we derive that∫ 1

0

B2n(t)Dm(2πt) dt = B2n

∫ 1

0

Dm(2πt) dt+

∫ 1

0

t (t− 1)Pn(t)Dm(2πt) dt

= B2n +

∫ 1−

0+
t (t− 1)Pn(t)

sin ((2m+ 1)πt)

sin (πt)
dt,

where 0+ and 1− indicate right-hand and left-hand limits as we approach 0 and 1 respectively. Integrating

by parts, we find that∫ 1−

0+
t (t− 1)Pn(t)

sin ((2m+ 1)πt)

sin (πt)
dt

=

(
t (t− 1)Pn(t)

sin (πt)

)
cos ((2m+ 1)πt)

π(2m+ 1)

∣∣∣∣1−
0+
−
∫ 1−

0+

d

dt

{
t (t− 1)Pn(t)

sin (πt)

}
cos ((2m+ 1)πt)

π(2m+ 1)
dt.

Letting f(t) = (t (t− 1))/ sin(πt), this equals

f(t)Pn(t)
cos ((4m+ 1)πt)

π(4m+ 1)

∣∣∣∣1−
0+
−
∫ 1−

0+

(
f ′(t)Pn(t) + f(t)P ′n(t)

) cos ((4m+ 1)πt)

π(4m+ 1)
dt.

A standard calculus exercise shows that

− 1

π
< f(t) < −1

4
and − 1

π
< f ′(t) <

1

π

for 0 < t < 1. Thus, recalling that n fixed, we conclude that∫ 1

0+
t (t− 1)Pn(t)

sin ((4m+ 1)πt/2)

sin (πt/2)
dt = O

( 1

m

)
.

Combining estimates, we have proved (2.5).
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2.4. Finishing the proof. Equating the expressions in (2.4) and (2.5), we have shown that

2
(−1)n−1(2n)!

(2π)2n

m∑
k=1

1

k2n
= B2n +O

( 1

m

)
.

Letting m→∞, we now see that
∞∑
k=1

1

k2n
= (−1)n−1

(2π)2nB2n

2(2n)!

for every n ∈ N.
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