AN ELEMENTARY EVALUATION OF ((2n) USING DIRICHLET’S KERNEL

MICAH B. MILINOVICH AND UNIQUE SUBEDI

We use Dirichlet’s kernel to give a simple proof of the classical identity of ((2n). Our proof simplifies the
proof in [3] and shows a deeper connection between Bernoulli numbers and Dirichlet’s kernel.

1. INTRODUCTION

Let ((s) denote the Riemann zeta function. The series representation
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converges absolutely for s € C when Re(s) > 1. For n € N, we define Bernoulli polynomials B,,(z) by the

generating function
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for |z| < 2m. We call B, (0) the n** Bernoulli number, which henceforth will be denoted as B,,. Dirichlet’s
kernel is defined by
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In this paper, we use Dirichlet’s kernel to prove the following classical result
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for n € N.
Our work is motivated by the elegant calculation of [2], which uses Dirichlet’s kernel to give a quick proof
of the identity

Stark establishes this identity by evaluating the integral

/ t Doy, (t) dt,
0

for m € N in two different ways. On one hand, he evaluates this integral by using the definition of the
Dirichlet kernel as the sum of cosines in (1.2]). On the other hand, he evaluates (2.1]) by expressing Doy, (7t)

as a ratio of sines. Upon letting m — oo, he derives the identity
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which immediately gives the identity for {(2).



2. EVALUATING ((2n)

We prove (|1.3) by evaluating the integral

/ " Bon(t) Dy (2mt) (2.1)

for m,n € N, in two different ways. On one hand, we evaluate this integral by using the definition of the
Dirichlet kernel as the sum of exponentials in . On the other hand, we evaluate by expressing
Doy (27t) as a ratio of sines. The formula for ((2n) in will follow from these two calculations upon
letting m — oo.

2.1. Properties of Bernoulli polynomials and Bernoulli numbers. We now state the properties of
Bernoulli polynomials and Bernoulli numbers necessary for our proof. For n € N, we recall the well-known
identities

Bl (t) = n By (1) (2.2)
and

1
/ By, (z) dx = 0. (2.3)
0
Also recall that Bi(1) = —B;1(0) = 3 and B,(0) = B, (1) for n > 1. Standard properties of Bernoulli

polynomials and numbers can be found in [I, Appendix BJ.

The following integral is a key component of our proof of (1.3).

Lemma 1. For k € Z\{0} and n € N, we have

' rikt g, _ (=1)""'(2n)!
/o Bay (t) e2™F dt—W

Proof. We use (2.2) to integrate by parts 2n — 1 times. Since B, (0) = B, (1) for n > 2 and 2™ = 1 at

both end points for all k£ € Z, all but one term vanishes leaving
(=1~ t@2n) [t 2mikt
W ; B1 (t) e dt.
Integrating by parts again and using the facts Bi(1) = —B;(0) = 3 and fol ™M dt = 0, this reduces to
(—1)2n=1(2n)!
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The lemma now follows upon using %" = (—1)". O

2.2. Evaluating the integral with D,,(27t) as a sum of exponentials. Using the first representation
for the Dirichlet kernel in ((1.2) and then interchanging the order of integration and summation, we derive
that
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By (2.3)), the integral of the Bernoulli polynomial vanishes. In the remaining sum over even k, we use Lemma
[[ to find that
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2.3. Evaluating the integral with D,,(27t) as a ratio of sines. For fixed n, our goal is to show that
1
1
/ Bon(t) Dy (27t) dt = Boy, + o(f). (2.5)
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Since Bay,(0) = Bay(1) = Bay, it follows that
Bon(t) = Bayn + (Ban(t) — B2n(0)) = Bay +t(t — 1) Po(2)

for some polynomial P,(t). The first representation for the Dirichlet kernel in ([1.2]) implies that
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Hence, using the definition of P, (t) and the third representation for D,,(27t) in (|1.2), we derive that
1 1 1
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where 07 and 17 indicate right-hand and left-hand limits as we approach 0 and 1 respectively. Integrating
by parts, we find that
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Letting f(t) = (¢t (t — 1))/ sin(nt), this equals
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A standard calculus exercise shows that

1 1 1, 1

for 0 < ¢t < 1. Thus, recalling that n fixed, we conclude that

/1 H— 1) Palt) sin ((4m + 1)mt/2) df — O(l)

+ sin (7t /2) m
Combining estimates, we have proved ([2.5)).




2.4. Finishing the proof. Equating the expressions in (2.4) and (2.5), we have shown that

(—D)"12n) o= 1 1
2W;W fBQn+O(E).

Letting m — oo, we now see that
= 1 27)2" Bay,
S b= (B
k2n 2(2n)!
k=1
for every n € N.
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