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1. INTRODUCTION

Dirichlet’s kernel is defined by

D, (z):= Z ekt =1 4 2Zcoskx = W (1.1)
k=1

k=—n

D,,(z) is periodic (mod 7). So, its Ly norm is defined as

1 s
1Dl =7 [ Do)l da.
T Jo
It is well-known [Il Section 8.3] that
4
[[Dnll1 = — logn + O(1) for n > 1.
™

However, it turns out that we can obtain the closed-form expression of Li-norm of Dirichlet’s kernel, which

allows us to get the following refined estimate.

Theorem 1. Let v be Fuler-Mascheroni constant. For n € N, we have

4 1
[1Dalls = = log (2n + 1) +C+O(ﬁ)

where

_ 4 = 2logk
Ci= (;(W - +log4—|—’y) (1.2)

We deduce Theorem [1f from the following exact formula for ||D,]1.

Theorem 2. Forn € N, we have

jo%s) k(2n+1)

16 1

Dalh==5Y —— > —.
1Pl 2 4k — 1 201

Using Euler-Maclaurin summation, we derive the following corollary.

Corollary 3. Let B,, is m*" Bernoulli number. For n,M € N,

4 N ¢ B
Dolli = —1log(2n+1)+C 0( 2M)
1Pally = 7 1og(n+ 1)+ O+ 3 (5 285m0\ g2

where C' is defined on (1.2)), and

 4Bo, (1 2172m) 1

mm? (4k2 — 1)k2
k=1

(oo}

Ch :

—, form>1. (1.3)

Remark: Theorem [I] corresponds to the case M = 1.

We use the following lemmas to prove theorem



2. LEMMAS

Lemma 4. The Fourier series of |sinx| on (—m,m) is

8 — (sink:z:)
|sinz| = kz T

Proof. The function |sinz| is even and has periodicity 7, thus Fourier series of |sinz| has a form

oo
|sinz| = % + Zak cos (2kx),

k=1
where
2 [T 1 [" 2 1 1
ay = ;/0 sin z cos (2kz) dx = ;/0 (sin((2kz + 1)z +sin((1 — Qk)ac) dx = ;(m - ﬁ)
_ —4
- om(4k? - 1)
So, we obtain
) cos (2kx)
|sinzx| = ,_,Z U1
Since
=1 /= 1 1 1
,;4152—1 _2<;2k—1 _2k+1) T2

we can write

. cos (2kx) 8 smkm
|sinz| = 24162—1**Z 4k — 1 *EZ Az 1
k=1

Lemma 5. For any k € N, we have

k

Proof. The proof relies on the trigonometric identity

sin? x — sin®y = sin(z + y) sin(z — y) for all 2,y € R.

T/2 ;.2
sin” k
I],C = / " y dy
0 siny
Then, we get the recursive identity

™2 sin? (k + 1)y — sin® ky /2 1
Iv1 — Iy = in ((2 1 = .
k1 — Ik /0 Siny dy /0 sin ((2k + 1)y) dy 1

b [,
0 siny

and the recursive identity, our claim follows by the induction on n.

Define

Using




Lemma 6. Let v be Fuler-Mascheroni constant. For N,M € N,

i 1 logN+log4+’y+MZlBgm(212m1)+O( Bou )

-1 2 2 4m N2m MN?2M

where By, is the k' Bernoulli’s number and the implied constant is independent of M, N.

Proof. Note that

N N N Y1 TR I A -
2o\ X atlw) w2 (2.)

Standard application of Euler-Maclaurin Summation gives

M—-1

1 BQm BQM
4_1z logN—i—’y—i-f—f—Z o N2m (MN2M>'
Our desired result follows upon employing the previous estimate in (2.1]). O

3. PROOF oF THEOREM [2

Proof. From the last equality in (1.1)), we may write L; norm of Dirichlet’s kernel as
1 [T ]sin((n+1/2)x 2 (™2 |sin((2n + 1
||Dn‘|1:*/ [sin ( /)] dm—f/ |((_—)y)|dy7
Q 0 sin (y)

sin (x/2) o
where the second equality follows from the change of variables. Employing the Fourier series of |sin ((2n + 1)y)|

from Lemma [4 we get
w/2

Z (sin (k(2n + 1)y))?

(4k%? — 1) siny v

which can be further expressed as

g~ 1 /”/2 (sin((2n + 1)y))*
w2 Pt 4k% — 1 siny 4

by switching order of integration and summation using Fubini’s Theorem. Finally, the application of Lemma

[] gives the desired formula
k(2n+1)

16 1 1
w2 = 4k? — 1 2 ot

4. PROOF OF COROLLARY [

Proof. Substituting the result of Lemma [f] in the result of Theorem [2} we get

&S] M—-1
1 1 (log(k(2n+1)) log4 By (2172m — 1
1Dl = 20 <Og( @ntl) | logdty cul ) 1o

Bom
w2 — 4k2 — 1 2 2 — 4m(k(2n + 1))2m <W) )

which can be rearranged as

o M oo
4 4 log k 4 (21=2m 1) Bor
2 Jog(2n+1 —( log 4 ) il ( )
losn )+ 5(3 oy Tlesd 49 7r2zzlm4k2—1k2m(2n+1) O\ 3nem

k=1 m=1

w



With definition of C' and C, stated in (|1.2)) and (|1.3) respectively, we get the form,
4 M-1

[1Dnlls = — log(2n +1) +C + > (
m=1

Cm ( Baym )
2n + 1)2m Mn2M )’

as expressed in Corollary [3]
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