ON L_{1}-NORM OF DIRICHLET'S KERNEL

MICAH B. MILINOVICH AND UNIQUE SUBEDI

1. Introduction

Dirichlet's kernel is defined by

$$
\begin{equation*}
D_{n}(x):=\sum_{k=-n}^{n} e^{i k x}=1+2 \sum_{k=1}^{n} \cos k x=\frac{\sin ((n+1 / 2) x)}{\sin (x / 2)} \tag{1.1}
\end{equation*}
$$

$D_{n}(x)$ is periodic $(\bmod \pi)$. So, its L_{1} norm is defined as

$$
\left\|D_{n}\right\|_{1}:=\frac{1}{\pi} \int_{0}^{\pi}\left|D_{n}(x)\right| d x
$$

It is well-known [1, Section 8.3] that

$$
\left\|D_{n}\right\|_{1}=\frac{4}{\pi^{2}} \log n+O(1) \text { for } n \geq 1
$$

However, it turns out that we can obtain the closed-form expression of L_{1}-norm of Dirichlet's kernel, which allows us to get the following refined estimate.

Theorem 1. Let γ be Euler-Mascheroni constant. For $n \in \mathbb{N}$, we have

$$
\left\|D_{n}\right\|_{1}=\frac{4}{\pi^{2}} \log (2 n+1)+C+O\left(\frac{1}{n^{2}}\right)
$$

where

$$
\begin{equation*}
C:=\frac{4}{\pi^{2}}\left(\sum_{k=1}^{\infty} \frac{2 \log k}{\left(4 k^{2}-1\right)}+\log 4+\gamma\right) \tag{1.2}
\end{equation*}
$$

We deduce Theorem 1 from the following exact formula for $\left\|D_{n}\right\|_{1}$.
Theorem 2. For $n \in \mathbb{N}$, we have

$$
\left\|D_{n}\right\|_{1}=\frac{16}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1} \sum_{\ell=1}^{k(2 n+1)} \frac{1}{2 \ell-1}
$$

Using Euler-Maclaurin summation, we derive the following corollary.
Corollary 3. Let B_{m} is $m^{\text {th }}$ Bernoulli number. For $n, M \in \mathbb{N}$,

$$
\left\|D_{n}\right\|_{1}=\frac{4}{\pi^{2}} \log (2 n+1)+C+\sum_{m=1}^{M-1} \frac{C_{m}}{(2 n+1)^{2 m}}+O\left(\frac{B_{2 M}}{M n^{2 M}}\right)
$$

where C is defined on 1.2 , and

$$
\begin{equation*}
C_{m}:=\frac{4 B_{2 m}\left(1-2^{1-2 m}\right)}{m \pi^{2}} \sum_{k=1}^{\infty} \frac{1}{\left(4 k^{2}-1\right) k^{2 m}}, \text { for } m \geq 1 \tag{1.3}
\end{equation*}
$$

Remark: Theorem 1 corresponds to the case $M=1$.
We use the following lemmas to prove theorem 2.

2. Lemmas

Lemma 4. The Fourier series of $|\sin x|$ on $(-\pi, \pi)$ is

$$
|\sin x|=\frac{8}{\pi} \sum_{k=1}^{\infty} \frac{(\sin k x)^{2}}{4 k^{2}-1}
$$

Proof. The function $|\sin x|$ is even and has periodicity π, thus Fourier series of $|\sin x|$ has a form

$$
|\sin x|=\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos (2 k x)
$$

where

$$
\begin{aligned}
a_{k}:=\frac{2}{\pi} \int_{0}^{\pi} \sin x \cos (2 k x) d x=\frac{1}{\pi} \int_{0}^{\pi}(\sin ((2 k+1) x+\sin ((1-2 k) x) d x & =\frac{2}{\pi}\left(\frac{1}{2 k+1}-\frac{1}{2 k-1}\right) \\
& =\frac{-4}{\pi\left(4 k^{2}-1\right)}
\end{aligned}
$$

So, we obtain

$$
|\sin x|=\frac{2}{\pi}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos (2 k x)}{4 k^{2}-1}
$$

Since

$$
\sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1}=\frac{1}{2}\left(\sum_{k=1}^{\infty} \frac{1}{2 k-1}-\frac{1}{2 k+1}\right)=\frac{1}{2}
$$

we can write

$$
|\sin x|=\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos (2 k x)}{4 k^{2}-1}=\frac{8}{\pi} \sum_{k=1}^{\infty} \frac{(\sin k x)^{2}}{4 k^{2}-1}
$$

Lemma 5. For any $k \in \mathbb{N}$, we have

$$
\int_{0}^{\pi / 2} \frac{\sin ^{2} k y}{\sin y}=\sum_{\ell=1}^{k} \frac{1}{2 \ell-1}
$$

Proof. The proof relies on the trigonometric identity

$$
\sin ^{2} x-\sin ^{2} y=\sin (x+y) \sin (x-y) \text { for all } x, y \in \mathbb{R}
$$

Define

$$
I_{k}:=\int_{0}^{\pi / 2} \frac{\sin ^{2} k y}{\sin y} d y
$$

Then, we get the recursive identity

$$
I_{k+1}-I_{k}=\int_{0}^{\pi / 2} \frac{\sin ^{2}(k+1) y-\sin ^{2} k y}{\sin y} d y=\int_{0}^{\pi / 2} \sin ((2 k+1) y) d y=\frac{1}{2 k+1}
$$

Using

$$
I_{1}=\int_{0}^{\pi / 2} \frac{\sin ^{2} y}{\sin y} d y=1
$$

and the recursive identity, our claim follows by the induction on n.

Lemma 6. Let γ be Euler-Mascheroni constant. For $N, M \in \mathbb{N}$,

$$
\sum_{\ell=1}^{N} \frac{1}{2 \ell-1}=\frac{\log N}{2}+\frac{\log 4+\gamma}{2}+\sum_{m=1}^{M-1} \frac{B_{2 m}\left(2^{1-2 m}-1\right)}{4 m N^{2 m}}+O\left(\frac{B_{2 M}}{M N^{2 M}}\right)
$$

where B_{k} is the $k^{\text {th }}$ Bernoulli's number and the implied constant is independent of M, N.

Proof. Note that

$$
\begin{equation*}
\sum_{\ell=1}^{N} \frac{1}{2 \ell-1}=\left(\sum_{\ell=1}^{N} \frac{1}{2 \ell-1}+\sum_{\ell=1}^{N} \frac{1}{2 \ell}\right)-\sum_{\ell=1}^{n} \frac{1}{2 \ell}=\sum_{\ell=1}^{2 N} \frac{1}{\ell}-\frac{1}{2} \sum_{\ell=1}^{N} \frac{1}{\ell} \tag{2.1}
\end{equation*}
$$

Standard application of Euler-Maclaurin Summation gives

$$
\sum_{\ell=1}^{N} \frac{1}{\ell}=\log N+\gamma+\frac{1}{2 N}+\sum_{m=1}^{M-1} \frac{B_{2 m}}{2 m N^{2 m}}+O\left(\frac{B_{2 M}}{M N^{2 M}}\right)
$$

Our desired result follows upon employing the previous estimate in 2.1.

3. Proof of Theorem 2

Proof. From the last equality in (1.1), we may write L_{1} norm of Dirichlet's kernel as

$$
\left\|D_{n}\right\|_{1}=\frac{1}{\pi} \int_{0}^{\pi} \frac{|\sin ((n+1 / 2) x)|}{\sin (x / 2)} d x=\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{|\sin ((2 n+1) y)|}{\sin (y)} d y
$$

where the second equality follows from the change of variables. Employing the Fourier series of $|\sin ((2 n+1) y)|$ from Lemma 4, we get

$$
\frac{16}{\pi^{2}} \int_{0}^{\pi / 2} \sum_{k=1}^{\infty} \frac{(\sin (k(2 n+1) y))^{2}}{\left(4 k^{2}-1\right) \sin y} d y
$$

which can be further expressed as

$$
\frac{16}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1} \int_{0}^{\pi / 2} \frac{(\sin ((2 n+1) y))^{2}}{\sin y} d y
$$

by switching order of integration and summation using Fubini's Theorem. Finally, the application of Lemma 5 gives the desired formula

$$
\frac{16}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1} \sum_{\ell=1}^{k(2 n+1)} \frac{1}{2 \ell-1}
$$

4. Proof of Corollary 3

Proof. Substituting the result of Lemma 6 in the result of Theorem 2, we get

$$
\left\|D_{n}\right\|_{1}=\frac{16}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{4 k^{2}-1}\left(\frac{\log (k(2 n+1))}{2}+\frac{\log 4+\gamma}{2}+\sum_{m=1}^{M-1} \frac{B_{2 m}\left(2^{1-2 m}-1\right)}{4 m(k(2 n+1))^{2 m}}+O\left(\frac{B_{2 M}}{M\left((k n)^{2 M}\right)}\right)\right)
$$

which can be rearranged as

$$
\frac{4}{\pi^{2}} \log (2 n+1)+\frac{4}{\pi^{2}}\left(\sum_{k=1}^{\infty} \frac{\log k}{4 k^{2}-1}+\log 4+\gamma\right)+\frac{4}{\pi^{2}} \sum_{m=1}^{M} \sum_{k=1}^{\infty} \frac{B_{2 m}\left(2^{1-2 m}-1\right)}{m\left(4 k^{2}-1\right) k^{2 m}(2 n+1)^{2 m}}+O\left(\frac{B_{2 M}}{M n^{2 M}}\right)
$$

With definition of C and C_{m} stated in (1.2) and (1.3) respectively, we get the form,

$$
\left\|D_{n}\right\|_{1}=\frac{4}{\pi^{2}} \log (2 n+1)+C+\sum_{m=1}^{M-1} \frac{C_{m}}{(2 n+1)^{2 m}}+O\left(\frac{B_{2 M}}{M n^{2 M}}\right)
$$

as expressed in Corollary 3 .

References

[1] Zygmund, A. Trigonometrical series. 1935.

