
ON L1-NORM OF DIRICHLET’S KERNEL

MICAH B. MILINOVICH AND UNIQUE SUBEDI

1. Introduction

Dirichlet’s kernel is defined by

Dn(x) :=

n∑
k=−n

eikx = 1 + 2

n∑
k=1

cos kx =
sin((n+ 1/2)x)

sin(x/2)
. (1.1)

Dn(x) is periodic (mod π). So, its L1 norm is defined as

||Dn||1 :=
1

π

∫ π

0

|Dn(x)| dx.

It is well-known [1, Section 8.3] that

||Dn||1 =
4

π2
log n+O(1) for n ≥ 1.

However, it turns out that we can obtain the closed-form expression of L1-norm of Dirichlet’s kernel, which

allows us to get the following refined estimate.

Theorem 1. Let γ be Euler-Mascheroni constant. For n ∈ N, we have

||Dn||1 =
4

π2
log (2n+ 1) + C +O

( 1

n2

)
where

C :=
4

π2

( ∞∑
k=1

2 log k

(4k2 − 1)
+ log 4 + γ

)
(1.2)

We deduce Theorem 1 from the following exact formula for ||Dn||1.

Theorem 2. For n ∈ N, we have

||Dn||1 =
16

π2

∞∑
k=1

1

4k2 − 1

k(2n+1)∑
`=1

1

2`− 1
.

Using Euler-Maclaurin summation, we derive the following corollary.

Corollary 3. Let Bm is mth Bernoulli number. For n,M ∈ N,

||Dn||1 =
4

π2
log(2n+ 1) + C +

M−1∑
m=1

Cm
(2n+ 1)2m

+O
( B2M

Mn2M

)
where C is defined on (1.2), and

Cm :=
4B2m(1− 21−2m)

mπ2

∞∑
k=1

1

(4k2 − 1)k2m
, for m ≥ 1. (1.3)

Remark: Theorem 1 corresponds to the case M = 1.

We use the following lemmas to prove theorem 2.
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2. Lemmas

Lemma 4. The Fourier series of | sinx| on (−π, π) is

| sinx| = 8

π

∞∑
k=1

(sin kx)2

4k2 − 1
.

Proof. The function | sinx| is even and has periodicity π, thus Fourier series of | sinx| has a form

| sinx| = a0
2

+

∞∑
k=1

ak cos (2kx),

where

ak :=
2

π

∫ π

0

sinx cos (2kx) dx =
1

π

∫ π

0

(
sin((2k + 1)x+ sin((1− 2k)x

)
dx =

2

π

( 1

2k + 1
− 1

2k − 1

)
=

−4

π(4k2 − 1)
.

So, we obtain

| sinx| = 2

π
− 4

π

∞∑
k=1

cos (2kx)

4k2 − 1
.

Since
∞∑
k=1

1

4k2 − 1
=

1

2

( ∞∑
k=1

1

2k − 1
− 1

2k + 1

)
=

1

2
,

we can write

| sinx| = 4

π

∞∑
k=1

1

4k2 − 1
− 4

π

∞∑
k=1

cos (2kx)

4k2 − 1
=

8

π

∞∑
k=1

(sin kx)2

4k2 − 1
.

�

Lemma 5. For any k ∈ N, we have

∫ π/2

0

sin2 ky

sin y
=

k∑
`=1

1

2`− 1
.

Proof. The proof relies on the trigonometric identity

sin2 x− sin2 y = sin(x+ y) sin(x− y) for all x, y ∈ R.

Define

Ik :=

∫ π/2

0

sin2 ky

sin y
dy.

Then, we get the recursive identity

Ik+1 − Ik =

∫ π/2

0

sin2 (k + 1)y − sin2 ky

sin y
dy =

∫ π/2

0

sin ((2k + 1)y) dy =
1

2k + 1
.

Using

I1 =

∫ π/2

0

sin2 y

sin y
dy = 1

and the recursive identity, our claim follows by the induction on n. �

2



Lemma 6. Let γ be Euler-Mascheroni constant. For N,M ∈ N,

N∑
`=1

1

2`− 1
=

logN

2
+

log 4 + γ

2
+

M−1∑
m=1

B2m(21−2m − 1)

4m N2m
+O

( B2M

MN2M

)
where Bk is the kth Bernoulli’s number and the implied constant is independent of M,N .

Proof. Note that

N∑
`=1

1

2`− 1
=

(
N∑
`=1

1

2`− 1
+

N∑
`=1

1

2`

)
−

n∑
`=1

1

2`
=

2N∑
`=1

1

`
− 1

2

N∑
`=1

1

`
(2.1)

Standard application of Euler-Maclaurin Summation gives

N∑
`=1

1

`
= logN + γ +

1

2N
+

M−1∑
m=1

B2m

2mN2m
+O

( B2M

MN2M

)
.

Our desired result follows upon employing the previous estimate in (2.1). �

3. Proof of Theorem 2

Proof. From the last equality in (1.1), we may write L1 norm of Dirichlet’s kernel as

||Dn||1 =
1

π

∫ π

0

| sin ((n+ 1/2)x)|
sin (x/2)

dx =
2

π

∫ π/2

0

| sin ((2n+ 1)y)|
sin (y)

dy,

where the second equality follows from the change of variables. Employing the Fourier series of | sin ((2n+ 1)y)|
from Lemma 4, we get

16

π2

∫ π/2

0

∞∑
k=1

(sin (k(2n+ 1)y))2

(4k2 − 1) sin y
dy,

which can be further expressed as

16

π2

∞∑
k=1

1

4k2 − 1

∫ π/2

0

(sin((2n+ 1)y))2

sin y
dy

by switching order of integration and summation using Fubini’s Theorem. Finally, the application of Lemma

5 gives the desired formula

16

π2

∞∑
k=1

1

4k2 − 1

k(2n+1)∑
`=1

1

2`− 1
.

�

4. Proof of Corollary 3

Proof. Substituting the result of Lemma 6 in the result of Theorem 2, we get

||Dn||1 =
16

π2

∞∑
k=1

1

4k2 − 1

(
log (k(2n+ 1))

2
+

log 4 + γ

2
+

M−1∑
m=1

B2m(21−2m − 1)

4m(k(2n+ 1))2m
+O

( B2M

M((kn)2M )

))
,

which can be rearranged as

4

π2
log(2n+ 1) +

4

π2

( ∞∑
k=1

log k

4k2 − 1
+ log 4 + γ

)
+

4

π2

M∑
m=1

∞∑
k=1

B2m(21−2m − 1)

m(4k2 − 1)k2m(2n+ 1)2m
+O

( B2M

Mn2M

)
.
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With definition of C and Cm stated in (1.2) and (1.3) respectively, we get the form,

||Dn||1 =
4

π2
log(2n+ 1) + C +

M−1∑
m=1

Cm
(2n+ 1)2m

+O
( B2M

Mn2M

)
,

as expressed in Corollary 3. �
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